Для нагревания и охлаждения жидких сред разработаны теплообменники разнообразных конструкций. Ниже рассматри­ваются некоторые конструкции теплообменных аппаратов, при­меняющихся в пищевой промышленности.

Выбор конструкции теплообменных аппаратов

Конкретная задача нагревания или охлаждения данного про­дукта может быть решена с помощью различных теплообмен­ников. Конструкцию теплообменника следует выбирать, исходя из следующих основных требований, предъявляемых к теплообменным аппаратам.

Важнейшим требованием является соответствие аппарата технологическому процессу обработки данного продукта; это до­стигается при таких условиях: поддержание необходимой темпе­ратуры процесса, обеспечение возможности регулирования тем­пературного режима; соответствие рабочих скоростей продукта минимально необходимой продолжительности пребывания про­дукта в аппарате; выбор материала аппарата в соответствии с химическими свойствами продукта; соответствие аппарата давлениям рабочих сред.

Вторым требованием является высокая эффективность (про­изводительность) и экономичность работы аппарата, связанные с повышением интенсивности теплообмена и одновременно с соблюдением оптимальных гидравлических сопротивлений аппа­рата. Эти требования обычно выполняются при соблюдении сле­дующих условий: достаточные скорости однофазных рабочих сред для осуществления турбулентного режима; благоприятное относительное движение рабочих сред (обычно лучше противо­ток); обеспечение оптимальных условий для отвода конденсата и неконденсирующихся газов (при паровом обогреве); достиже­ние соизмеримых термических сопротивлений по обеим сторонам стенки поверхности нагрева; предотвращение возможности за­грязнения и легкая чистка поверхности нагрева, микробиологи­ческая чистота и др.

Существенными требованиями являются также компакт­ность, малая масса, простота конструкции, удобство монтажа и ремонта аппарата. С этой точки зрения оказывают влияние сле­дующие факторы; конфигурация поверхности нагрева; способ размещения и крепления трубок в трубных решетках; наличие и тип перегородок, уплотнений; устройство камер, коробок, днищ; габаритные размеры аппарата и др.

Ряд факторов определяет надежность работы аппарата и удобство его эксплуатации: компенсация температурных дефор­маций, прочность и плотность разъемных соединений, доступ для осмотра и чистки, удобство контроля за работой аппарата, удобство соединения аппарата с трубопроводами и т. д.

Эти основные требования должны быть положены в основу конструирования и выбора теплообменных аппаратов. При этом самое большое значение имеет обеспечение заданного техноло­гического процесса в аппарате.

Для ориентировки при выборе теплообменников приведем следующие соображения. Из парожидкостных подогревателей наиболее рациональным является многоходовой по трубному пространству - трубчатый теплообменник жесткой конструк­ции (к подвижным трубным решеткам прибегают в крайнем случае). Этот же теплообменник с успехом применим в качестве газового или жидкостного при больших расходах рабочих тел и небольшом числе ходов в межтрубном пространстве. При малых расходах жидкостей или газов лучше применять элементные аппараты без подвижных трубных решеток.

Ребристые аппараты следует применять, если условия тепло­отдачи между рабочими средами и стенкой с обеих сторон по­верхности нагрева существенно отличаются (в газожидкостных теплообменниках); оребрение целесообразно со стороны наи­меньшего коэффициента теплоотдачи.

Основные способы увеличения интенсивности теплообмена в подогревателях:

а) уменьшение толщины гидродинамического пограничного слоя в результате повышения скорости движения рабочих тел или другого вида воздействия; это достигается, например, раз-

бивкой пучка трубок на ходы и установкой межтрубных перего­родок;

б) улучшение условий отвода неконденсирующихся газов и конденсата при паровом обогреве;

в) создание благоприятных условий для обтекания рабочими телами поверхности нагрева, при которых вся поверхность ак­тивно участвует в теплообмене;

г) обеспечение оптимальных значений прочих определяющих факторов: температур, дополнительных термических сопротивле­нии и т. д.

Путем анализа частных термических сопротивлений можно выбрать наилучший способ повышения интенсивности теплооб­мена в зависимости от типа теплообменника и характера рабо­чих тел. Так, например, в жидкостных теплообменниках попе­речные перегородки имеет смысл устанавливать только при не­скольких ходах в трубном пространстве. Перегородки не всегда необходимы; при вертикальном расположении трубок и нагреве паром последний подается в межтрубное пространство; попереч­ные перегородки будут мешать стеканию конденсата. При теп­лообмене газа с газом или жидкости с жидкостью количество протекающей через межтрубное пространство жидкости может оказаться настолько большим, что скорость ее достигнет тех же значений, что и внутри трубок; следовательно, установка пе­регородок теряет смысл. Перегородки бесцельны также в случае сильно загрязненных жидкостей, при которых вследствие нарас­тания слоя загрязнений на трубках решающее влияние на коэф­фициент теплопередачи оказывает величина Rn.

Страницы: 1 2 3