Рис. 35. Распределение температуры в стене, состоящей из замкнутых (несообщающихся)

Рис. 35. Распределение температуры в стене, состоящей из замкнутых (несообщающихся) воздушных прослоек, образованных тремя стальными (или стеклянными) пластинами (в предположении полного отсутствия лучистых тепловых потоков). Поток тепла справа налево. Температура внутреннего воздуха Твнутр выше температуры внешнего воздуха ТВНешн. На каждой поверхности образуется пограничный тепло-передающий слой толщиной а = (1-3) см с перепадом температуры АТ Поток тепла равен 0, = АТ/К = (ТВНутр - ТВНеш)/6К, где И, = 0,1 м2 град/Вт -термическое сопротивление пограничного слоя, не зависящее от толщины воздушных прослоек 8, если а < 8.

При малых толщинах воздушных прослоек встречные потоки воздуха у противоположных стенок зазора начинают влиять друг на друга (перемешиваются). Иными словами, толщина воздушной прослойки становится меньше двух невозмущенных пограничных слоев, вследствие чего коэффициент теплопередачи увеличивается, а сопротивление теплопередачи соответственно уменьшается. Кроме того, при повышенных температурах стенок воздушных прослоек начинают играть роль процессы теплопередачи излучением. Уточнённые данные в соответствии с официальными рекомендациями СНиП П-3-79* приводятся в таблице 7, откуда видно, что толщина невозмущенных пограничных слоев составляет 1-3 см, но существенное изменение теплопередачи наступает лишь при толщинах воздушных прослоек менее 1 см. Это означает, в частности, что воздушные промежутки между стёклами в стеклопакете не следует делать толщиной менее 1 см.

Таблица 7

Термическое сопротивление замкнутой воздушной прослойки, м2 град/Вт

Из таблицы 7 видно, что официальные рекомендации отличаются от введённой намиИз таблицы 7 видно, что официальные рекомендации отличаются от введённой нами

Из таблицы 7 видно, что официальные рекомендации отличаются от введённой нами оценочной величины термического сопротивления воздушного зазора Я = 0,2 м2 град/Вт не более, чем на 20-25%.

Их таблицы 7 также следует, что более тёплые воздушные прослойки имеют более низкие термические сопротивления (лучше пропускают через себя тепло). Это объясняется влиянием на теплоперенос лучистого механизма, который мы рассмотрим в следующем разделе. Отметим при этом, что вязкость воздуха растёт с температурой, так что тёплый воздух турбулизуется хуже.

Если конструкционный материал стены обладает низкой теплопроводностью, то при расчётах необходимо учитывать его вклад в теплосопротивление стены (рис. 36). Хотя вклад пустот, как правило, является значительным, заполнение всех пустот эффективным утеплителем позволяет (за счёт полной остановки движения воздуха) существенно (в 3-10 раз) повысить тепловое сопротивление стены (рис. 37).

Сама по себе возможность получения вполне пригодных для бань (по крайней мере, летних) тёплых стен из нескольких слоев «холодного» металла, конечно же, интересна и используется, например, финнами для противопожарной защиты стен в саунах около печи (см. раздел 5). На практике, однако, такое решение оказывается весьма сложным ввиду необходимости механической фиксации параллельных слоев металла многочисленными перемычками, которые играют роль нежелательных «мостиков» холода. Так или иначе, даже один слой металла или ткани «греет», если не продувается ветром. На этом явлении основаны палатки, юрты, чумы, которые, как известно, до сих пор используются (и использовались веками) в качестве бань в кочевых условиях. Так, один слой ткани (всё равно какой, лишь бы непродуваемой) лишь в два раза «холодней» кирпичной стены толщиной 6 см, а прогревается в сотни раз быстрее. Тем не менее, ткань палатки остаётся намного холодней воздуха в палатке, что не позволяет реализовать сколько бы то ни было длительных паровых режимов. К тому же, любые (даже мелкие) порывы ткани сразу же приводят к мощным конвективным теплопотерям.

Страницы: 1 2 3 4