Рис. 63. Сумма кондуктив-ных и конвективных теплопо-терь в зависимости от кратности

Рис. 63. Сумма кондуктив-ных и конвективных теплопо-терь в зависимости от кратности воздухообмена в бане объёмом 10 м3. 1 - вклад кондуктивных теплопотерь, 2 - вклад конвективных теплопотерь, А - суммарные теплопотери бань с обычными дачными стенами (см. нижнее штрихпунктирное значение интервала А на рис. 62), В - суммарные тепло-потери бань с утеплёнными стенами по СНиП23-02-2003, пенопласт 100 мм (см. верхнее штрихпунктирное значение интервала В на рис. 62).

Помимо кондуктивных теплопотерь через стены имеются конвективные теплопотери на нагрев вентиляционного воздуха, увеличивающиеся пропорционально кратности воздухообмена (рис. 63). Количественный вклад конвективных теплопотерь не зависит от материала стен и уровня кондуктивных теплопотерь, но относительный вклад в тепловом балансе увеличивается при утеплении стен. Так, при нормативном термическом сопротивлении стен по СНиП23-02-2003 вклад конвективной составляющей начинает превышать вклад кондуктивной составляющей теплопотерь при кратности теплообмена более 4 раз в час (прямая В). При обычных бревенчатых (брусовых) стенах толщиной 10 см вклад конвективной составляющей численно остаётся тем же, но относительный вклад становится незначительным (прямая А). Так или иначе, при высокой кратности воздухообмена мощность нагрева порядка 1 кВт уже окажется явно недостаточной даже при сколь угодно хорошо утеплённых стенах и при сколь угодно сниженных теплопотерях через окна и двери.

В целом, из рисунков 62 и 63 видно, что для поддержания выбранного температурного режима в бане рассматриваемого размера необходима номинальная мощность теплового источника не менее (2-3) кВт в банях с эффективным утеплителем и (3-5) кВт в брусовых банях. Такой уровень мощности нагрева труднодостижим с помощью цельнокирпичных печей (см. раздел 5.3).

Что касается иных размеров бань, то необходимо отметить следующую важную закономерность (рис. 64). Кондуктивные теплопотери через стены пропорциональны площади ограждающих конструкций, то есть в случае условно кубической формы строения пропорциональны 6а2А,, где а -размер грани куба, X - коэффициент теплопроводности стен. Конвективные потери на нагрев вентиляционного воздуха при фиксированной кратности воздухообмена пропорциональны объёму бани а3. То есть соотношение вкладов конвективной и кондуктивной составляющих теплообмена пропорционально а3/Ал2=а/А,. Это значит, что при больших X и малых размерах бань (малых объёмах) всегда преобладают кондуктивные теплопотери, а при X малых и больших размерах бань -конвективные.

Рис. 64. Уровень теплопотерь в зависимости от характерного размера строения (а)

Рис. 64. Уровень теплопотерь в зависимости от характерного размера строения (а) при фиксированной кратности воздухообмена 6 раз в час. 1 - конвективные теплопотери при фиксированной кратности вентиляции, пропорциональные объёму строения а3, 2 и 3 - кондуктивные теплопотери через стены из пенопласта (2) и бруса (3) толщиной 100 мм, пропорциональные площади ограждающих конструкций 6а2. Сверху слева показан качественный характер хода кривых х=а2 и х=а3 (отвечающих ходу кондуктивных и конвективных теплопотерь), имеющих точку пересечения (обозначенную большой чёрной точкой) Прямая 4 отвечает конвективным теплопотерям, отвечающим фиксированной скорости вентиляции 200 м3/час.

Так, если кратность воздухообмена составляет 6 час1 и если стены утеплены в соответствии со СНиП23-02-2003, то конвективные теплопотери начинают преобладать при объёмах бани уже 2-3 м3 и выше (рис. 64). Это значит, что при очень «тёплых стенах» мощность теплового источника должна быть пропорциональна объёму помещения, что и рекомендуется финскими компаниями для сухих саун (с некоторыми поправками). Но если стены не очень «тёплые» (например, изготовлены из бруса толщиной 10 см), то конвективные теплопотери начинают преобладать лишь при очень больших объёмах бань более 100 м3. То есть, если стены не очень «тёплые», то мощность теплового источника должна быть пропорциональна площади ограждающих конструкций бани.

Конечно, фиксированная кратность воздухообмена на уровне (5-6) час1 в случае бань большого размера оправдана лишь для сухих многоместных саун с высокой «производительностью» по потоку людей и с «плотной установкой» людей в сауне из расчёта (3-5) м3 на одного человека. В представительских саунах для немногочисленных посетителей достаточна вентиляция (20-30) м3/час на одного человека. В этом случае ситуация изменяется в корне: при фиксированном проходном сечении вентотверстий, то есть при фиксированной скорости воздухообмена (например, 200 м3/час на семь-десять человек) в маленьких банях получается высокая кратность вентиляции, а в больших - малая (кривая 4 на рис. 64). Вклад конвективной составляющей при этом может стать преобладающим лишь при малых размерах бань. Этот факт используется в русских паровых банях: паровой режим легко реализуется в крупных банных помещениях (объёмом более 50 м3), а в малых банных помещениях (объёмом 10 м3 и менее) легче реализуется сухой режим.

Страницы: 1 2 3