ввиду малости толщины пограничного слоя 5, который попросту «сдувается». Струи в низком колпаке являются промежуточным случаем между тупиковой и набегающей (рис. 134в). Струя в перевале соединяет две транзитные струи (рис. 134г). Струи также бывают не просто всплывающими (рис. 134) за счёт своей «лёгкости» из-за высокой температуры, но и сносимыми газовым потоком (рис. 135а).

Особый класс струй, интересный в низких колпаках, составляют плоские струи в полуограниченном пространстве (рис. 130ж), сталкивающиеся с бортиком (выступом, плотиной) с образованием турбулентных барьеров (рис. 1356 и в). Ясно, что эти струи даже в случае очень малых скоростей в режиме ламинарности далеки от идеальных течений Вернул-ли (рис. 133в).

Тупиковая турбулентная струя в замкнутой полости (сосуде, ёмкости) развивается следующим образом (рис. 133а). Сначала ламинарный поток 1 расширяется самым обычным турбулентным образом с захватом внешнего газа (рис. 132 и 49) до заполнения 22-25% площади поперечного сечения ограничивающей полости. Затем струя уже начинает чувствовать стеснение 10, и угол её расширения постепенно уменьшается (рис. 133а). После того, как сечение струи составит 42-45% площади поперечного сечения струи, подтекание (захват) окружающего газа в струю становится практически невозможным из-за, как иногда говорят, «увеличенного сопротивления». Имеется в виду, что линейная скорость газов в струе сравнивается с линейной скоростью встречных внешних (возвращающихся из тупика) газов 4, так что газы струи уже не в состоянии увлечь за собой подтекающие встречные массы внешнего газа. А если говорить точнее, то направленный турбулентный поток в струе попросту перемешивается с противоположно направленным турбулентным потоком газов 4 и превращается в некую единую стоячую турбулентную зону 6 (застойную). Иными словами, струя (или полость) «запирается». При этом, если увеличить длину полости (вплоть до бесконечности), то картина рассматриваемого нами начального участка практически не изменится (в изотермическом случае равенства температур струи и полости). Это значит, что можно говорить о дальнобойности струи в конкретной полости: вся струя до разрушения характеризуется некой «длиной». Если длина струи больше длины полости, то такая полость считается проточной. Аналогичная картина наблюдается и при падении струи (из шланга) на поверхность бассейна: струя воды, попадая в воду бассейна, уходит вглубь лишь на конечную глубину, и возмущения на поверхности могут достичь, а могут и не достичь дна водоёма.

Струя в тупиковой полости (рис. 133а) «затапливается» не в неких абстрактных «газах полости», а во вполне определённых газах, тех, что раньше вошли в тупик. Других газов в тупиковых полостях просто нет. Струя фактически развивается во встречном потоке возвращающихся газов. Газ входящей струи турбулентно захватывает газ той же самой струи, но уже побывавшей в застойной зоне. Поэтому мы имеем дело, по-суще-ству, с неким смесительным аппаратом, смешивающим газы из разных (пространственных и временных) участков струи. Любая полость является смесительной, причём, чем полость крупнее, тем больше проявляется это смешение.

Транзитная турбулентная струя в замкнутой полости (сосуде, ёмкости) развивается во многом аналогично тупиковой струе (рис. 1336). Этот неожиданный результат получается из-за того, что струя обычно захватывает в единицу времени большие массы газа из полости (много больше, чем вводятся самой струёй в единицу времени в полость), но выйти через патрубок 2 может только то количество газа, которое вошло через патрубок 1. А это значит, что захватываемые струёй массы газа должны постоянно возвращаться к истоку струи, создавая тем самым тот же встречный поток 4 (ветер), который характерен и для тупиковых струй. Если полость очень длинная и имеет вид трубы, то застойная зона 7 превращается в протяжённую турбулентную область (с медленным поступательным движением), постепенно переходящую в ламинарный поток. В этом проявляется структура расширяющегося перехода, создающего местное газодинамическое сопротивление. Как и в случае тупиковых струй, транзитная струя при входе охлаждается подсасываемыми (эжектируемыми) объёмами газа полости. При этом резко снижается лучистый теплообмен, существенный при высоких температурах, особенно при задымлениях газа. Но если полость, газы в ней и газы струи имеют одну и ту же температуру, то никаких охлаждений, естественно, происходить не может.

Страницы: 1 2 3 4 5